Tag Archives: gearbox motor

China Best Sales Factory Price 140mm Motor Planetary Gearbox for 82mm Output Shaft planetary gearbox

Product Description

Factory Price 140MM Motor Planetary Gearbox For 82mm Output Shaft

The high-precision planetary gearbox adopts spur gear design, and is used in various control transmission fields with servo motors, such as precision machine tools, laser cutting equipment, battery processing equipment, etc. It has the advantages of large torsional rigidity and large output torque.

Product Description

Description:
(1).The output shaft is made of large size,large span double bearing design,output shaft and planetary arm bracket as a whole.The input shaft is placed directly on the planet arm bracket to ensure that the reducer has high operating accuracy and maximum torsional rigidity.
(2).Shell and the inner ring gear used integrated design,quenching and tempering after the processing of the teeth so that it can achieve high torque,high precision,high wear resistance.Moreover surface nickel-plated anti-rust treatment,so that its corrosion resistance greatly enhanced.
(3).The planetary gear transmission employs full needle roller without retainer to increase the contact surface,which greatly upgrades structural rigidity and service life.
(4).The gear is made of Japanese imported material.After the metal cutting process,the vacuum carburizing heat treatment to 58-62HRC. And then by the hobbing,Get the best tooth shape,tooth direction,to ensure that the gear of high precision and good impact toughness.
(5).Input shaft and sun gear integrated structure,in order to improve the operation accuracy of the reducer.

1.With bevel gear reversing mechanism,right angle steering output is realized.
2.Round flange output.threaded connection,standardized size.
3.The input connection specifications are complete and there are man choices.
4.Straight tooth transmission,single cantilever structure, simple design and high cost performance.
5.Keyway can be opened in the force shaft.
6.Return backlash 8-16 arcmin.

Specifications PAR140 PAR180
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 9400 14500
Max. Axial Load N 4700 7250
Torsional Rigidity Nm/arcmin 47 130
Max.Input Speed rpm 6000 6000
Rated Input Speed rpm 3000 3000
Noise dB ≤68 ≤68
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤5 ≤5
L2 arcmin ≤7 ≤7
P2 L1 arcmin ≤8 ≤8
L2 arcmin ≤10 ≤10
Moment Of Inertia Table L1 3 Kg*cm2 23.5 69.2
4 Kg*cm2 21.5 68.6
5 Kg*cm2 21.5 68.6
7 Kg*cm2 21.5 68.6
8 Kg*cm2 20.5 /
10 Kg*cm2 20.1 66.2
14 Kg*cm2 / 68.6
20 Kg*cm2 / 68.6
L2 25 Kg*cm2 6.88 23.8
30 Kg*cm2 7.1 22.2
35 Kg*cm2 6.88 22.2
40 Kg*cm2 6.88 22.2
50 Kg*cm2 6.88 22.2
70 Kg*cm2 6.88 22.2
100 Kg*cm2 6.34 21.6
Technical Parameter Level Ratio   PAR140 PAR180
Rated Torque L1 3 Nm 360 880
4 Nm 480 1100
5 Nm 480 1100
7 Nm 480 1100
8 Nm 440 /
10 Nm 360 1100
L2 14 Nm / 1100
20 Nm / 1100
25 Nm 480 1100
30 Nm 360 880
35 Nm 480 1100
40 Nm 480 1100
50 Nm 480 1100
70 Nm 480 1100
100 Nm 360 1100
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 20.8 41.9
L2 kg 26.5 54.8

Company Profile

Packaging & Shipping

1. Lead time: 10-15 days as usual, 30 days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Spring Machinery
Operating Speed: Low Speed
Function: Driving
Casing Protection: Protection Type
Type: Helical Gear
Certification: ISO9001
Samples:
US$ 899/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

In planetary gearboxes, the arrangement of shafts plays a crucial role in determining the gearbox’s overall structure and functionality. The two common shaft arrangements are coaxial and parallel configurations:

Coaxial Shaft Arrangement: In a coaxial arrangement, the input shaft and output shaft are positioned along the same axis, resulting in a compact and streamlined design. The planetary gears and other components are aligned concentrically around the central axis, allowing for efficient power transmission and reduced space requirements. Coaxial planetary gearboxes are commonly used in applications where space is limited, and a compact form factor is essential. They are often employed in robotics, automotive systems, and aerospace mechanisms.

Parallel Shaft Arrangement: In a parallel arrangement, the input and output shafts are positioned parallel to each other but on different axes. The planetary gears are aligned in a way that allows the power to be transmitted from the input shaft to the output shaft via a combination of meshing gears. This arrangement allows for a larger gear diameter and higher torque transmission capabilities. Parallel planetary gearboxes are often used in applications requiring high torque and heavy-duty performance, such as industrial machinery, construction equipment, and material handling systems.

The choice between coaxial and parallel shaft arrangements depends on the specific requirements of the application. Coaxial configurations are favored for compactness and efficient power transmission, while parallel configurations excel in handling higher torque and heavy loads. Both arrangements offer distinct advantages and are chosen based on factors like available space, torque demands, load characteristics, and overall system design.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Design Principles and Functions of Planetary Gearboxes

Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:

  • Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
  • Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
  • Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
  • Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
  • Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
  • Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
  • Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
  • Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
  • Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.

Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.

China Best Sales Factory Price 140mm Motor Planetary Gearbox for 82mm Output Shaft   planetary gearbox	China Best Sales Factory Price 140mm Motor Planetary Gearbox for 82mm Output Shaft   planetary gearbox
editor by CX 2024-05-16

China Good quality Low Backlash High Torque Planetary Gearbox for NEMA 86 Stepper Motor synchromesh gearbox

Product Description

Low Backlash High Torque Planetary Gearbox for NEMA 86 Stepper Motor

Planetary gearbox is a kind of reducer with wide versatility. The inner gear adopts low carbon alloy steel carburizing quenching and grinding or nitriding process. Planetary gearbox has the characteristics of small structure size, large output torque, high speed ratio, high efficiency, safe and reliable performance, etc. The inner gear of the planetary gearbox can be divided into spur gear and helical gear. Customers can choose the right precision reducer according to the needs of the application.

Product Parameters

Characteristics:

1.With bevel gear reversing mechanism,right angle steering output is realized’
2.Circycle output,threaded connection,standard size;
3.The input specifications are completes and there are many choices;
4.Spur transmission,single cantilever structure,design simple,high cost performance;
5.Keyway can be opened in the force shaft;
6.stable operation and low noise;
7.Size range:60-120mm;
8.Ratio range:3-100;
9.Precision range:8-16arcmin;
10.Support custom according to drawings or samples

Specifications PVFN60 PVFN90 PVFN120
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 240 450 1240
Max. Axial Load N 220 430 1000
Torsional Rigidity Nm/arcmin 1.8 4.85 11
Max.Input Speed rpm 8000 6000 6000
Rated Input Speed rpm 4000 3500 3500
Noise dB ≤58 ≤60 ≤65
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥92%
Return Backlash P1 L1 arcmin ≤8 ≤8 ≤8
L2 arcmin ≤12 ≤12 ≤12
P2 L1 arcmin ≤16 ≤16 ≤16
L2 arcmin ≤20 ≤20 ≤20
Moment Of Inertia Table L1 3 Kg*cm2 0.46 1.73 12.78
4 Kg*cm2 0.46 1.73 12.78
5 Kg*cm2 0.46 1.73 12.78
7 Kg*cm2 0.41 1.42 11.38
10 Kg*cm2 0.41 1.42 11.38
L2 12 Kg*cm2 0.44 1.49 12.18
15 Kg*cm2 0.44 1.49 12.18
16 Kg*cm2 0.72 1.49 12.18
20 Kg*cm2 0.44 1.49 12.18
25 Kg*cm2 0.44 1.49 12.18
28 Kg*cm2 0.44 1.49 12.18
30 Kg*cm2 0.44 1.49 12.18
35 Kg*cm2 0.44 1.49 12.18
40 Kg*cm2 0.44 1.49 12.18
50 Kg*cm2 0.34 1.25 11.48
70 Kg*cm2 0.34 1.25 11.48
100 Kg*cm2 0.34 1.25 11.48
Technical Parameter Level Ratio   PVFN60 PVFN90 PVFN120
Rated Torque L1 3 Nm 27 96 161
4 Nm 40 122 210
5 Nm 40 122 210
7 Nm 34 95 170
10 Nm 16 56 86
L2 12 Nm 27 96 161
15 Nm 27 96 161
16 Nm 40 122 210
20 Nm 40 122 210
25 Nm 40 122 210
28 Nm 40 122 210
30 Nm 27 96 161
35 Nm 40 122 210
40 Nm 40 122 210
50 Nm 40 122 210
70 Nm 34 95 170
100 Nm 16 56 86
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 1.7 4.4 12
L2 kg 1.9 5 14

Company Profile

Packaging & Shipping

lead time 10-15 working days as usual,30days in busy season,it will based on the detailed order quantity
Delivery of samples by DHL,Fedex,UPS,TNT,EMS

FAQ

1. who are we?
CZPT Group is based in ZheJiang , China, start from 1998,has a 3 subsidiaries in total.The Main Products is planetary gearbox,timing belt pulley, helical gear,spur gear,gear rack,gear ring,chain wheel,hollow rotating platform,module,etc

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.how to choose the suitable planetary gearbox?
First of all,we need you to be able to provide relevant parameters.If you have a motor drawing,it will let us recommend a suitable gearbox for you faster.If not,we hope you can provide the following motor parameters:output speed,output torque,voltage,current,ip,noise,operating conditions,motor size and power,etc

4. why should you buy from us not from other suppliers?
We are a 22 years experiences manufacturer on making the gears, specializing in manufacturing all kinds of spur/bevel/helical gear, grinding gear, gear shaft, timing pulley, rack, planetary gear reducer, timing belt and such transmission gear parts

5. what services can we provide?
Accepted Delivery Terms: Fedex,DHL,UPS;
Accepted Payment Currency:USD,EUR,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,PayPal,Western Union;
Language Spoken:English,Chinese,Japanese

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Motorcycle, Machinery, Marine, Agricultural Machinery, Textile Machinery
Function: Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Single-Step
Samples:
US$ 450/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining a compact form factor poses several challenges due to the intricate arrangement of gears and the need to balance various factors:

Space Constraints: Increasing the gear ratio typically requires adding more planetary stages, resulting in additional gears and components. However, limited available space can make it challenging to fit these additional components without compromising the compactness of the gearbox.

Efficiency: As the number of planetary stages increases to achieve higher gear ratios, there can be a trade-off in terms of efficiency. Additional gear meshings and friction losses can lead to decreased overall efficiency, impacting the gearbox’s performance.

Load Distribution: The distribution of loads across multiple stages becomes critical when designing high gear ratio planetary gearboxes. Proper load distribution ensures that each stage shares the load proportionally, preventing premature wear and ensuring reliable operation.

Bearing Arrangement: Accommodating multiple stages of planetary gears requires an effective bearing arrangement to support the rotating components. Improper bearing selection or arrangement can lead to increased friction, reduced efficiency, and potential failures.

Manufacturing Tolerances: Achieving high gear ratios demands tight manufacturing tolerances to ensure accurate gear tooth profiles and precise gear meshing. Any deviations can result in noise, vibration, and reduced performance.

Lubrication: Adequate lubrication becomes crucial in maintaining smooth operation and reducing friction as gear ratios increase. However, proper lubrication distribution across multiple stages can be challenging, impacting efficiency and longevity.

Noise and Vibration: The complexity of high gear ratio planetary gearboxes can lead to increased noise and vibration levels due to the higher number of gear meshing interactions. Managing noise and vibration becomes essential for ensuring acceptable performance and user comfort.

To address these challenges, engineers employ advanced design techniques, high-precision manufacturing processes, specialized materials, innovative bearing arrangements, and optimized lubrication strategies. Achieving the right balance between high gear ratios and compactness involves careful consideration of these factors to ensure the gearbox’s reliability, efficiency, and performance.

planetary gearbox

Signs of Wear or Damage in Planetary Gearboxes and Recommended Service

Planetary gearboxes, like any mechanical component, can exhibit signs of wear or damage over time. Recognizing these signs is crucial for timely maintenance to prevent further issues. Here are some common signs of wear or damage in planetary gearboxes:

1. Unusual Noise: Excessive noise, grinding, or whining sounds during operation can indicate worn or misaligned gear teeth. Unusual noise is often a clear indicator that something is wrong within the gearbox.

2. Increased Vibration: Excessive vibration or shaking during operation can result from misalignment, damaged bearings, or worn gears. Vibration can lead to further damage if not addressed promptly.

3. Gear Tooth Wear: Inspect gear teeth for signs of wear, pitting, or chipping. These issues can result from improper lubrication, overload, or other operational factors. Damaged gear teeth can affect the gearbox’s efficiency and performance.

4. Oil Leakage: Leakage of gearbox oil or lubricant can indicate a faulty seal or gasket. Oil leakage not only leads to reduced lubrication but can also cause environmental contamination and further damage to the gearbox components.

5. Temperature Increase: A significant rise in operating temperature can suggest increased friction due to wear or inadequate lubrication. Monitoring temperature changes can help identify potential issues early.

6. Reduced Efficiency: If you notice a decrease in performance, such as decreased torque output or inconsistent speed, it could indicate internal damage to the gearbox components.

7. Abnormal Gear Ratios: If the output speed or torque does not match the expected gear ratio, it could be due to gear wear, misalignment, or other issues affecting the gear engagement.

8. Frequent Maintenance Intervals: If you find that you need to service the gearbox more frequently than usual, it could be a sign that the gearbox is experiencing excessive wear or damage.

When to Service: If any of the above signs are observed, it’s important to address them promptly. Regular maintenance checks are also recommended to detect potential issues early and prevent more significant problems. Scheduled maintenance should include inspections, lubrication checks, and replacement of worn or damaged components.

It’s advisable to consult the gearbox manufacturer’s guidelines for recommended service intervals and practices. Regular maintenance can extend the lifespan of the planetary gearbox and ensure it continues to operate efficiently and reliably.

planetary gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

China Good quality Low Backlash High Torque Planetary Gearbox for NEMA 86 Stepper Motor   synchromesh gearbox	China Good quality Low Backlash High Torque Planetary Gearbox for NEMA 86 Stepper Motor   synchromesh gearbox
editor by CX 2024-05-14

China Hot selling High Precision Planetary Speed Reducer 3000 Rpm Motor Planetary Gearbox bevel gearbox

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

 
PLF series, PLE series, ZPLF series, ZPLE series, AB series, ABR series and many other models are available.

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

Advantages of the planetary gearbox:

Low backlash

High Efficiency

High Torque

High Input Speed

High Stability

High Reduction Ratio

Detailed Photos

Product Parameters

Name

High Precision Planetary Gearbox

Model

AB042, AB060, AB060A, AB090A, AB115, AB142, AB180, AB220

Gearing Arrangement

Planetary

Effeiency withfull load

≥97

Backlash

≤5

Weight

0.5~48kg

Gear Type

Helical Gear

Gear stages

1 stage, 2 stage 

Rated Torque

14N.m-2000N.m

Gear Ratio One-stage

3, 4, 5, 6, 7, 8, 9, 10

Gear Ratio Two-stage

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

Mounting Position

Horizontal (foot mounted) or Vertical (flange mounted)

Usage

stepper motor, servo motor, AC motor, DC motor, etc

External Mounting Dimensions

1 stage reduction ratio 3~10

2 stage reduction ratio 15~100

Applications

Product Overview:

 

 Precision planetary gear reducer is another name for planetary gear reducer in the industry. Its main transmission structure is planetary gear, sun gear and inner gear ring.

Compared with other gear reducers, precision planetary gear reducers have the characteristics of high rigidity, high precision (single stage can achieve less than 1 point), high transmission efficiency (single stage can achieve 97% – 98%), high torque/volume ratio, lifelong maintenance-free, etc. Most of them are installed on stepper motor and servo motor to reduce speed, improve torque and match inertia.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Ab Series Gearbox, Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

planetary gearbox

Impact of Gear Tooth Design and Profile on the Efficiency of Planetary Gearboxes

The design and profile of gear teeth have a significant impact on the efficiency of planetary gearboxes:

  • Tooth Profile: The tooth profile, such as involute, cycloid, or modified profiles, affects the contact pattern and load distribution between gear teeth. An optimized profile minimizes stress concentration and ensures smooth meshing, contributing to higher efficiency.
  • Tooth Shape: The shape of gear teeth influences the amount of sliding and rolling motion during meshing. Gear teeth designed for more rolling and less sliding motion reduce friction and wear, enhancing overall efficiency.
  • Pressure Angle: The pressure angle at which gear teeth engage affects the force distribution and efficiency. Larger pressure angles can lead to higher efficiency due to improved load sharing, but they may require more space.
  • Tooth Thickness and Width: Optimized tooth thickness and width contribute to distributing the load more evenly across the gear face. Proper sizing reduces stress and increases efficiency.
  • Backlash: Backlash, the gap between meshing gear teeth, impacts efficiency by causing vibrations and energy losses. Properly controlled backlash minimizes these effects and improves efficiency.
  • Tooth Surface Finish: Smoother tooth surfaces reduce friction and wear. Proper surface finish, achieved through grinding or honing, enhances efficiency by reducing energy losses due to friction.
  • Material Selection: The choice of gear material influences wear, heat generation, and overall efficiency. Materials with good wear resistance and low friction coefficients contribute to higher efficiency.
  • Profile Modification: Profile modifications, such as tip and root relief, optimize tooth contact and reduce interference. These modifications minimize friction and increase efficiency.

In summary, the design and profile of gear teeth play a crucial role in determining the efficiency of planetary gearboxes. Optimal tooth profiles, shapes, pressure angles, thicknesses, widths, surface finishes, and material selections all contribute to reducing friction, wear, and energy losses, resulting in improved overall efficiency.

planetary gearbox

Recent Advancements in Planetary Gearbox Technology

Advancements in planetary gearbox technology have led to improved performance, efficiency, and durability. Here are some notable developments:

High-Efficiency Gearing: Manufacturers are using advanced materials and precision manufacturing techniques to create gears with optimized tooth profiles. This reduces friction and enhances overall efficiency, resulting in higher power transmission with lower energy losses.

Enhanced Lubrication: Innovative lubrication systems and high-performance lubricants are being employed to ensure consistent and reliable lubrication even in extreme conditions. This helps to reduce wear and extend the lifespan of the gearbox.

Compact Designs: Engineers are focusing on designing more compact and lightweight planetary gearboxes without compromising their performance. This is particularly important for applications with limited space and weight constraints.

Integrated Sensors: Planetary gearboxes are now being equipped with sensors and monitoring systems that provide real-time data on temperature, vibration, and other operating parameters. This allows for predictive maintenance and early detection of potential issues.

Smart Gearboxes: Some modern planetary gearboxes are equipped with smart features such as remote monitoring, adaptive control, and data analysis. These features contribute to more efficient operation and better integration with automation systems.

Advanced Materials: The use of high-strength and wear-resistant materials, such as advanced alloys and composites, improves the durability and load-carrying capacity of planetary gearboxes. This is particularly beneficial for heavy-duty and high-torque applications.

Customization and Simulation: Advanced simulation and modeling tools enable engineers to design and optimize planetary gearboxes for specific applications. This customization helps achieve the desired performance and reliability levels.

Noise and Vibration Reduction: Innovations in gear design and manufacturing techniques have led to quieter and smoother-running planetary gearboxes, making them suitable for applications where noise and vibration are concerns.

Environmental Considerations: With growing environmental awareness, manufacturers are developing more eco-friendly lubricants and materials for planetary gearboxes, reducing their ecological footprint.

Overall, recent advancements in planetary gearbox technology are aimed at enhancing efficiency, durability, and versatility to meet the evolving demands of various industries and applications.

planetary gearbox

Impact of Gear Ratio on Output Speed and Torque in Planetary Gearboxes

The gear ratio of a planetary gearbox has a significant effect on both the output speed and torque of the system. The gear ratio is defined as the ratio of the number of teeth on the driven gear (output) to the number of teeth on the driving gear (input).

1. Output Speed: The gear ratio determines the relationship between the input and output speeds of the gearbox. A higher gear ratio (more teeth on the output gear) results in a lower output speed compared to the input speed. Conversely, a lower gear ratio (fewer teeth on the output gear) leads to a higher output speed relative to the input speed.

2. Output Torque: The gear ratio also affects the output torque of the gearbox. An increase in gear ratio amplifies the torque delivered at the output, making it higher than the input torque. Conversely, a decrease in gear ratio reduces the output torque relative to the input torque.

The relationship between gear ratio, output speed, and output torque is inversely proportional. This means that as the gear ratio increases and output speed decreases, the output torque proportionally increases. Conversely, as the gear ratio decreases and output speed increases, the output torque proportionally decreases.

It’s important to note that the gear ratio selection in a planetary gearbox involves trade-offs between output speed and torque. Engineers choose a gear ratio that aligns with the specific application’s requirements, considering factors such as desired speed, torque, and efficiency.

China Hot selling High Precision Planetary Speed Reducer 3000 Rpm Motor Planetary Gearbox   bevel gearbox	China Hot selling High Precision Planetary Speed Reducer 3000 Rpm Motor Planetary Gearbox   bevel gearbox
editor by CX 2024-05-06

China Standard Servo Motor Planetary Gearbox best automatic gearbox

Product Description

Servo Motor Planetary Gearbox

High precision planetary gearbox matched with serve motor, stepping motor are widely used. Lowest backlash<3"); High output torques; High efficiency(96%); Honed toothings; 22 ratios I=3, …., 512; Low noise(<65dB(A)); Any mounting position; Easy motor mounting; Life time lubrication; Figure diameters 40, 60, 80, 120, 160mm. More options.

Planetary gearbox:
ZDE: Precision planetary-round flange output
ZDF: Precision planetary-square flange output
ZDWE: Precise planetary-right angle round flange output
ZDWF: Precise planetary-right angle square flange output
ZDS: Precise planetary-high rigidity, low back lash

Rated output torque N. M 4.5-1800
Instant stop torque N. M Two times of rated output torque
Life Hour 30, 000
Full load efficiency   90%, 94%, 96%
Operating temperature ° C -25—+90
IP   IP54
Lubrication type   Lifetime lubrication
Mounting type   Any

 

Product type   PL40 PL60 PL80 PL120 PL1600
Torsional stiffness N. M/arcmin 0.7 1.8 4.5 12 38
Noise dB(A) 55 58 60 65 70
Max output speed Min 10000 8000 6000 6000 6000
Recommend input speed Min 4500 4000 4000 4000 3000

Company Information

FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you ! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Motorcycle, Machinery
Function: Speed Changing, Speed Increase
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Customization:
Available

|

Customized Request

planetary gearbox

Role of Planetary Gearboxes in Powertrain Systems of Electric and Hybrid Vehicles

Planetary gearboxes play a critical role in the powertrain systems of both electric and hybrid vehicles, contributing to their efficiency and performance:

Electric Motor Integration: In electric vehicles (EVs) and hybrid vehicles, planetary gearboxes are commonly used to connect the electric motor to the drivetrain. They enable torque and speed transformation, ensuring the motor’s output is suitable for the vehicle’s desired speed range and load conditions.

Torque Splitting in Hybrids: Hybrid vehicles often have both an internal combustion engine (ICE) and an electric motor. Planetary gearboxes enable torque splitting between the two power sources, optimizing their combined performance for various driving scenarios, such as electric-only mode, hybrid mode, and regenerative braking.

Regenerative Braking: Planetary gearboxes facilitate regenerative braking in electric and hybrid vehicles. They enable the electric motor to function as a generator, converting kinetic energy into electrical energy during deceleration. This energy can then be stored in the vehicle’s battery for later use.

Compact Design: Planetary gearboxes offer a compact design with a high power density, making them suitable for the limited space available in electric and hybrid vehicles. This compactness allows manufacturers to maximize interior space and accommodate battery packs, drivetrain components, and other systems.

Efficient Power Distribution: The unique arrangement of planetary gears allows for efficient power distribution and torque management. This is particularly important in electric and hybrid powertrains, where optimal power allocation between different components contributes to overall efficiency.

CVT Functionality: Some hybrid vehicles incorporate Continuously Variable Transmission (CVT) functionality using planetary gearsets. This enables seamless and efficient transitions between various gear ratios, improving the driving experience and enhancing fuel efficiency.

Performance Modes: Planetary gearboxes facilitate the implementation of different performance modes in electric and hybrid vehicles. These modes, such as “Sport” or “Eco,” adjust the power distribution and gear ratios to optimize performance or energy efficiency based on the driver’s preferences.

Reduction Gear for Electric Motors: Electric motors often operate at high speeds and require reduction gearing to match the vehicle’s requirements. Planetary gearboxes provide the necessary gear reduction while maintaining efficiency and torque output.

Efficient Torque Transfer: Planetary gearboxes ensure efficient transfer of torque from the power source to the wheels, resulting in smooth acceleration and responsive performance in electric and hybrid vehicles.

Integration with Energy Storage: Planetary gearboxes contribute to the integration of energy storage systems, such as lithium-ion batteries, by efficiently connecting the power source to the drivetrain while managing power delivery and regeneration.

In summary, planetary gearboxes are integral components of the powertrain systems in electric and hybrid vehicles. They enable efficient power distribution, torque transformation, regenerative braking, and various driving modes, contributing to the overall performance, efficiency, and sustainability of these vehicles.

planetary gearbox

Signs of Wear or Damage in Planetary Gearboxes and Recommended Service

Planetary gearboxes, like any mechanical component, can exhibit signs of wear or damage over time. Recognizing these signs is crucial for timely maintenance to prevent further issues. Here are some common signs of wear or damage in planetary gearboxes:

1. Unusual Noise: Excessive noise, grinding, or whining sounds during operation can indicate worn or misaligned gear teeth. Unusual noise is often a clear indicator that something is wrong within the gearbox.

2. Increased Vibration: Excessive vibration or shaking during operation can result from misalignment, damaged bearings, or worn gears. Vibration can lead to further damage if not addressed promptly.

3. Gear Tooth Wear: Inspect gear teeth for signs of wear, pitting, or chipping. These issues can result from improper lubrication, overload, or other operational factors. Damaged gear teeth can affect the gearbox’s efficiency and performance.

4. Oil Leakage: Leakage of gearbox oil or lubricant can indicate a faulty seal or gasket. Oil leakage not only leads to reduced lubrication but can also cause environmental contamination and further damage to the gearbox components.

5. Temperature Increase: A significant rise in operating temperature can suggest increased friction due to wear or inadequate lubrication. Monitoring temperature changes can help identify potential issues early.

6. Reduced Efficiency: If you notice a decrease in performance, such as decreased torque output or inconsistent speed, it could indicate internal damage to the gearbox components.

7. Abnormal Gear Ratios: If the output speed or torque does not match the expected gear ratio, it could be due to gear wear, misalignment, or other issues affecting the gear engagement.

8. Frequent Maintenance Intervals: If you find that you need to service the gearbox more frequently than usual, it could be a sign that the gearbox is experiencing excessive wear or damage.

When to Service: If any of the above signs are observed, it’s important to address them promptly. Regular maintenance checks are also recommended to detect potential issues early and prevent more significant problems. Scheduled maintenance should include inspections, lubrication checks, and replacement of worn or damaged components.

It’s advisable to consult the gearbox manufacturer’s guidelines for recommended service intervals and practices. Regular maintenance can extend the lifespan of the planetary gearbox and ensure it continues to operate efficiently and reliably.

planetary gearbox

Advantages of Planetary Gearboxes Compared to Other Gearbox Configurations

Planetary gearboxes, also known as epicyclic gearboxes, offer several advantages compared to other gearbox configurations. These advantages make them well-suited for a wide range of applications. Here’s a closer look at why planetary gearboxes are favored:

  • Compact Size: Planetary gearboxes are known for their compact and space-efficient design. The arrangement of multiple gears within a single housing allows for high gear reduction ratios without significantly increasing the size of the gearbox.
  • High Torque Density: Due to their compact design, planetary gearboxes offer high torque density, meaning they can transmit a significant amount of torque relative to their size. This makes them ideal for applications where space is limited, but high torque is required.
  • Efficiency: Planetary gearboxes can achieve high efficiency levels, especially when properly lubricated and well-designed. The arrangement of multiple meshing gears allows for load distribution, reducing individual gear tooth stresses and minimizing losses due to friction.
  • Multiple Gear Stages: Planetary gearboxes can be designed with multiple stages, allowing for higher gear reduction ratios. This is particularly advantageous when precise control of output speed and torque is required.
  • High Gear Ratios: Planetary gearboxes can achieve high gear reduction ratios in a single stage, eliminating the need for multiple external gears. This simplifies the overall design and reduces the number of components.
  • Load Sharing: The multiple gear meshing arrangements in planetary gearboxes distribute loads evenly across multiple gears, reducing the stress on individual components and enhancing overall durability.
  • High Precision: Planetary gearboxes offer high precision and accuracy in gear meshing, making them suitable for applications that demand precise motion control.
  • Quiet Operation: The design of planetary gearboxes often leads to smoother and quieter operation compared to some other gearbox configurations, contributing to improved user experience.

Overall, the advantages of planetary gearboxes in terms of size, torque density, efficiency, versatility, and precision make them an attractive choice for a wide range of applications across industries, including robotics, automotive, aerospace, and industrial machinery.

China Standard Servo Motor Planetary Gearbox   best automatic gearbox	China Standard Servo Motor Planetary Gearbox   best automatic gearbox
editor by CX 2024-04-23

China Good quality Desboer Factory Custom Helical Ndr 140 Series Gearbox Right Angle Reduction 90 Degree Planetary Gear Box for Servo Motor planetary gearbox

Product Description

Product Description

The NDR140 series planetary gearboxes are designed and machined as a single unit with special tapered roller bearings to provide high radial load, high torque, ultra-precision, and small size. The ND series uses in highly rigid industries such as fiber optic laser equipment, floor track equipment, robot seventh axis, Parallel robots (spider hand) machine tools, and rotating arms.
Product Name: High Precision Planetary Reducer
Product Series: NDR140 Series
Product features: high torque, high load, ultra-precision, small size
Product Description:
Integrated design concept with high-strength bearings ensure the product itself is durable and efficient
A variety of output ideas such as shaft output, flange and gear are available.
1 arc minute ≤ backlash ≤ 3 arc minutes
Reduction ratios ranging from 3 to 100
Frame design: increases torque and optimizes power transmission
Optimised selection of oil seals: reduces friction and laminate transmission efficiency
Protection class IP65
Warranty: 2 years

Our Advantages

High torque
High load
ultra-precision
Small size

Detailed Photos

 

Product Parameters

Segment number Single segment
Ratio i 4 5 7 10 14 20
Rated output torque Nm 530 620 520 420 520 420
Emergency stop torque Nm Three times of Maximum Output Torque
Rated input speed Rpm 3000
Max input speed Rpm 8000
Ultraprecise backlash arcmin ≤2
Precision backlash arcmin ≤4
Standard backlash arcmin ≤6
Torsional rigidity Nm/arcmin 151
Max.bending moment Nm 1300
Max.axial force N 10590
Service life hr 30000(15000 under continuous operation)
Efficiency % ≥95%
Weight kg 21.9
Operating Temperature ºC -10ºC~+90ºC
Lubrication   Synthetic grease
Protection class   IP64
Mounting Position   All directions
Noise level(N1=3000rpm,non-loaded) dB(A) ≤70
Rotary inertia Kg·cm² 23.4 21.8

Applicable Industries

 

                              Packaging   Machinery                              Mechanical  Hand                                                         Textile  Machinery

                   Non  Standard  automation                                          Machine  Tool                                                       Printing   Equipment

Certifications

 

 

Company Profile

 

DESBOER (HangZhou) Transmission Technology Co., Ltd. is a subsidiary of DESBOER (China), which is committed to the design, development, customized production and sales of high precision planetary reducer as 1 of the technology company. Our company has over 10 years of design, production and sales experience, the main products are the high precision planetary reducer, gear, rack, etc., with high quality, short delivery period, high cost performance and other advantages to better serve the demand of global customers. It is worth noting that we remove the intermediate link sale from the factory directly to customers, so that you can get the most ideal price and also get our best quality service simultaneously.

 

About Research

In order to strengthen the advantages of products in the international market, the head company in Kyoto, Japan to established KABUSHIKIKAISYA KYOEKI, mainly engaged in the development of DESBOER high precision planetary reducer, high precision of transmission components such as the development work, to provide the most advanced design technology and the most high-quality products for the international market.

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Marine, Agricultural Machinery, CNC Machine
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Plantery Type
Hardness: Hardened Tooth Surface
Installation: All Directions
Step: Single-Step
Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Enhancing Wind Turbine System Performance with Planetary Gearboxes

Planetary gearboxes play a crucial role in enhancing the performance and efficiency of wind turbine systems. Here’s how they contribute:

1. Speed Conversion: Wind turbines operate optimally at specific rotational speeds to generate electricity efficiently. Planetary gearboxes allow for speed conversion between the low rotational speed of the wind turbine rotor and the higher speed required by the generator. This speed adaptation ensures the generator operates at its peak efficiency, resulting in maximum power generation.

2. Torque Amplification: Wind turbine blades may experience varying wind speeds, which result in fluctuating torque loads. Planetary gearboxes can amplify the torque generated by the rotor blades before transmitting it to the generator. This torque multiplication helps maintain stable generator operation even during wind speed variations, improving overall energy production.

3. Compact Design: Wind turbines are often installed in locations with limited space, such as offshore platforms or densely populated areas. Planetary gearboxes offer a compact design, allowing for efficient power transmission within a small footprint. This compactness is vital for accommodating gearboxes in the limited nacelle space of the wind turbine.

4. Load Distribution: Wind turbines are subjected to varying wind conditions, including gusts and turbulence. Planetary gearboxes distribute the load evenly among multiple planet gears, reducing stress and wear on individual components. This balanced load distribution improves gearbox durability and reliability.

5. Efficiency Optimization: Planetary gearboxes are known for their high efficiency due to their parallel axis arrangement and multiple gear stages. The efficient power transmission minimizes energy losses within the gearbox, resulting in more power being converted from wind energy to electricity.

6. Maintenance and Reliability: The robust construction of planetary gearboxes contributes to their durability and longevity. Wind turbines often operate in challenging environments, and the reliability of the gearbox is crucial for minimizing maintenance and downtime. Planetary gearboxes’ low maintenance requirements and ability to handle varying loads contribute to the overall reliability of wind turbine systems.

7. Variable Speed Control: Some wind turbines use variable-speed operation to optimize power generation across a range of wind speeds. Planetary gearboxes can facilitate variable speed control by adjusting the gear ratio to match the wind conditions. This flexibility improves energy capture and reduces stress on turbine components.

8. Adaptation to Turbine Size: Planetary gearboxes are available in various sizes and gear ratios, making them adaptable to different turbine sizes and power outputs. This versatility allows wind turbine manufacturers to select gearboxes that align with specific project requirements.

Overall, planetary gearboxes play a pivotal role in optimizing the performance, efficiency, and reliability of wind turbine systems. Their ability to convert speed, amplify torque, and distribute loads makes them a key component in harnessing wind energy for clean and sustainable electricity generation.

planetary gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

China Good quality Desboer Factory Custom Helical Ndr 140 Series Gearbox Right Angle Reduction 90 Degree Planetary Gear Box for Servo Motor   planetary gearbox	China Good quality Desboer Factory Custom Helical Ndr 140 Series Gearbox Right Angle Reduction 90 Degree Planetary Gear Box for Servo Motor   planetary gearbox
editor by CX 2024-04-12

China Hot selling High Torque Gearbox Reducer Worm Planetary Spur Helical Bevel Motor Gear Box car gearbox

Product Description

Detailed Photos

 

Features of S series reducer

The same model can be equipped with motors of various powers. It is easy to realize the combination and connection between various models.
The transmission efficiency is high, and the single reducer efficiency is up to 96%. three
The transmission ratio is subdivided and the range is wide. The combined model can form a large transmission ratio and low output speed.
The installation forms are various, and can be installed with any foot, B5 flange or B4 flange. The foot mounting reducer has 2 machined foot mounting planes.
Helical gear and worm gear combination, compact structure, large reduction ratio.
Installation mode: foot installation, hollow shaft installation, flange installation, torque arm installation, small flange installation.
Input mode: motor direct connection, motor belt connection or input shaft, connection flange input.
Average efficiency: reduction ratio 7.5-69.39 is 77%; 70.43-288 is 62%; The S/R combination is 57%.

S57 SF57 SA57 SAF57 S series helical worm gear box speed reducer 0.18kw 0.25kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw, max. permissible torque up to 300Nm, transmission ratios from 10.78 to 196.21. Mounting mode: foot mounted, flange mounted, short flange mounted, torque arm mounted. Output shaft: CZPT shaft, hollow shaft (with key, with shrink disc and with involute spline).

Product Parameters

 


 

Company Profile

 

Certifications

 

Packaging & Shipping

 

FAQ

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Expansion
Gear Shape: Bevel Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment

Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:

High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.

Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.

Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.

Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.

Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.

Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.

Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.

planetary gearbox

Design Principles and Functions of Planetary Gearboxes

Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:

  • Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
  • Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
  • Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
  • Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
  • Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
  • Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
  • Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
  • Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
  • Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.

Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.

China Hot selling High Torque Gearbox Reducer Worm Planetary Spur Helical Bevel Motor Gear Box   car gearbox	China Hot selling High Torque Gearbox Reducer Worm Planetary Spur Helical Bevel Motor Gear Box   car gearbox
editor by CX 2024-04-04

China high quality 36mm Precision Small Planetary Gearbox with DC 12V 24V Motor differential gearbox

Product Description

We are a factory specialized in metal parts hardware & metal gearbox geared motor through powder metallurgy process .We services with ODM/OEM gearbox design and development , gearmotors manufacture.
Custom planetary gears .
A planetary gearbox model comprising 5 spur gears (sun, ring and 3 planets) and the carrier has been developed and analysed. The influence of gear teeth backlash and friction during mixed regime of lubrication has been taken into consideration.

Straight gears and racks are the classical components for mechanical transmission of rotary and transverse movements between moving parts of machines. This explains why these components are so widespread and are used to such a large extent in various sectors of general mechanics such that in practice it is impossible to find a rigid type power transfer drive chain which does not adopt these basic components.

Description:
Product Name : 36mm low speed high torque geared motor / Speed reducer / steel gearbox,powder transmission gear ,speed reducer
Gearbox Type: Planetary
Material: Steel 
Gear backlash: ≤2°
Bearing:Porous Bearing ,Rolling bearing
Radial loading on output shaft:≤ 30 N
Gear Ratio : 5:1 , 10:1 , 20:1 , 25:1 , 30:1 , 40:1 , 50:1 , 60:1 ,70:1…100:1…  optional
Gearbox diameter :  8mm , 12mm , 16mm , 22mm , 24mm ,28mm, 32mm ,36mm, 38mm , 42mm 48mm ……
3V , 6V ,12V ,24V available .

High Torque Brushed/Brushless/Stepper/AC Motor Usage Planetary Gearbox/Gear Reducer.

Planetary Gearbox advantages:

  1. Provides high torque at slow speeds .
  2. The shafts are made up of hardened and tempered alloy steel .
  3. Sun gears ,planet gears and ring gears are made of powder metallurgy and sintering steel .
  4. Low noise levels.
  5. Good quality taper roller bearings for input and output shafts .
  6. High efficiency .
  7. Increased repeatability . Its  Its greater speed radial and axial load offers reliability and robustness, minimizing the misalignment of the gear. In addition, uniform transmission and low vibrations at different loads provide a perfect repeatability.
  8. Perfect precision: Most rotating angular stability improves the accuracy and reliability of the movement.
  9. Lower noise level because there is more surface contact. Rolling is much softer and jumps are virtually nonexistent.
  10. Greater durability: Due to its torsional rigidity and better rolling. To improve this feature, your bearings help reduce the losses that would occur by rubbing the shaft on the box directly. Thus, greater efficiency of the gear and a much smoother operation is achieved.
  11. Increased torque transmission: With more teeth in contact, the mechanism is able to transmit and withstand more torque. In addition, it does it in a more uniform manner.
  12. Very good levels of efficiency: Planetary reducers offer greater efficiency and thanks to its design and internal layout losses are minimized during their work. In fact, today, this type of drive mechanisms are those that offer greater efficiency.
  13. Maximum versatility: Its mechanism is contained in a cylindrical gearbox, which can be installed in almost any space.

Application:
monitor,automatic vending machine,automatic cruise control,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster,printers,conditioning damper actuator,Car tail gate electric putter,tooth brush,vibrator, sanitary ware,coffee machine,Sweeping robot,toys etc.

Custom geared motors , planet gears , metal gearbox 

Welcome OEM ODM projects .  

Encoder available

Workshop

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Smooth and Controlled Movement in Industrial Robots with Planetary Gearboxes

Planetary gearboxes play a crucial role in ensuring smooth and controlled movement in industrial robots, enhancing their precision and performance:

Reduced Backlash: Planetary gearboxes are designed to minimize backlash, which is the amount of play or free movement between gear teeth. This reduction in backlash results in precise and accurate motion control, allowing industrial robots to achieve precise positioning and repeatability.

High Gear Reduction Ratios: Planetary gearboxes offer high gear reduction ratios, allowing the robot’s motor to output higher torque while maintaining lower speed. This capability enables robots to handle heavy loads and perform tasks that require fine adjustments and delicate movements.

Compact Design: The compact and lightweight design of planetary gearboxes allows for their integration into the limited space of industrial robot joints and actuators. This compactness is crucial for maintaining the overall efficiency and agility of the robot’s movements.

Multi-Speed Capabilities: Planetary gearboxes can be designed with multiple gear stages, allowing industrial robots to operate at different speeds as needed for various tasks. This flexibility in speed selection enhances the robot’s versatility in performing tasks of varying complexities.

High Efficiency: Planetary gearboxes are known for their high efficiency, which translates to minimal energy loss during gear transmission. This efficiency ensures that the robot’s movements are smooth and consistent while optimizing energy consumption.

Torque Distribution: The arrangement of planetary gears allows for efficient distribution of torque across multiple gear stages. This feature ensures that the robot’s joints and actuators receive the appropriate amount of torque for controlled movement, even when handling varying loads.

Seamless Integration: Planetary gearboxes are designed to be easily integrated with servo motors and other robotic components. This seamless integration ensures that the gearbox’s performance is harmoniously aligned with the overall robotic system.

Precision and Accuracy: By providing precise gear reduction and motion control, planetary gearboxes enable industrial robots to perform tasks that demand high levels of precision and accuracy, such as assembly, welding, painting, and intricate material handling.

Reduced Vibrations: The reduced backlash and smooth gear engagement in planetary gearboxes contribute to minimized vibrations during robot operation. This results in quieter and more stable robot movements, further enhancing their performance and user experience.

Dynamic Load Handling: Planetary gearboxes can handle dynamic loads that may change during robot operation. Their ability to manage varying loads while maintaining controlled movement is essential for safe and reliable robot performance.

In summary, planetary gearboxes ensure smooth and controlled movement in industrial robots by minimizing backlash, offering high gear reduction ratios, providing a compact design, enabling multi-speed capabilities, maintaining high efficiency, distributing torque effectively, seamlessly integrating with robotic systems, enhancing precision and accuracy, reducing vibrations, and enabling dynamic load handling. These features collectively contribute to the precise and optimized motion of industrial robots in various applications and industries.

planetary gearbox

The Role of Lubrication and Cooling in Maintaining Planetary Gearbox Performance

Lubrication and cooling are essential factors in ensuring the optimal performance and longevity of planetary gearboxes. Here’s how they play a crucial role:

Lubrication: Proper lubrication is vital for reducing friction and wear between gear teeth and other moving components within the gearbox. It forms a protective layer that prevents metal-to-metal contact and minimizes heat generation. The lubricant also helps dissipate heat and contaminants, ensuring a smoother and quieter operation.

Using the right type of lubricant and maintaining the proper lubrication level are essential. Over time, lubricants may degrade due to factors like temperature, load, and operating conditions. Regular lubricant analysis and replacement help maintain optimal gearbox performance.

Cooling: Planetary gearboxes can generate significant heat during operation due to friction and power transmission. Excessive heat can lead to lubricant breakdown, reduced efficiency, and premature wear. Cooling mechanisms, such as cooling fans, fins, or external cooling systems, help dissipate heat and maintain a stable operating temperature.

Efficient cooling prevents overheating and ensures consistent lubricant properties, extending the life of the gearbox components. It’s particularly important in applications with high-speed or high-torque requirements.

Overall, proper lubrication and cooling practices are essential to prevent excessive wear, maintain efficient power transmission, and prolong the service life of planetary gearboxes. Regular maintenance and monitoring of lubrication quality and cooling effectiveness are key to ensuring the continued performance of these gearboxes.

planetary gearbox

Common Applications and Industries of Planetary Gearboxes

Planetary gearboxes are widely utilized across various industries and applications due to their unique design and performance characteristics. Some common applications and industries where planetary gearboxes are commonly used include:

  • Automotive Industry: Planetary gearboxes are found in automatic transmissions, hybrid vehicle systems, and powertrains. They provide efficient torque conversion and variable gear ratios.
  • Robotics: Planetary gearboxes are used in robotic joints and manipulators, providing compact and high-torque solutions for precise movement.
  • Industrial Machinery: They are employed in conveyors, cranes, pumps, mixers, and various heavy-duty machinery where high torque and compact design are essential.
  • Aerospace: Aerospace applications include aircraft actuation systems, landing gear mechanisms, and satellite deployment mechanisms.
  • Material Handling: Planetary gearboxes are used in equipment like forklifts and pallet jacks to provide controlled movement and high lifting capabilities.
  • Renewable Energy: Wind turbines use planetary gearboxes to convert low-speed, high-torque rotational motion of the blades into higher-speed rotational motion for power generation.
  • Medical Devices: Planetary gearboxes find applications in medical imaging equipment, prosthetics, and surgical robots for precise and controlled motion.
  • Mining and Construction: Planetary gearboxes are used in heavy equipment like excavators, loaders, and bulldozers to handle heavy loads and provide controlled movement.
  • Marine Industry: They are employed in marine propulsion systems, winches, and steering mechanisms, benefiting from their compact design and high torque capabilities.

The versatility of planetary gearboxes makes them suitable for applications that require compact size, high torque density, and efficient power transmission. Their ability to handle varying torque loads, offer high gear ratios, and maintain consistent performance has led to their widespread adoption across numerous industries.

China high quality 36mm Precision Small Planetary Gearbox with DC 12V 24V Motor   differential gearbox	China high quality 36mm Precision Small Planetary Gearbox with DC 12V 24V Motor   differential gearbox
editor by CX 2024-03-29

China OEM Desboer Nhk090 Series Ratio 3-10 Economical, High-Efficiency, Low-Backlash Planetary Gearboxes for Servo Motor gearbox and motor

Product Description

Product Description

The NHK series is an economic version with a round body design, an integrated sun gear motor shaft design, and high-strength deep groove ball bearings. Mainly used in injection moulding robots, food packaging machines, filling machine lines, labelling machines, appliance production lines, non-metal processing equipment and many other industries.

 

Applicable industries:
Injection moulding robots, food packaging machines, filling machine lines, labelling machines, appliance production lines, non-metal processing equipment and many other industries.

Product Name: High Precision Planetary Gedarbox
Product Series:NHK Series
Features:High precision,low noise,light weight
Product Description:
Integrated design concept with high-strength bearings ensure the product itself is durable and efficient
A variety of output ideas such as shaft output, flange and gear are available.
1 arc minute ≤ backlash ≤ 3 arc minutes
Reduction ratios ranging from 3 to 100
Frame design: increases torque and optimizes power transmission
Optimised selection of oil seals: reduces friction and laminate transmission efficiency
Protection class IP65
Warranty: 2 years

Our Advantages

Advantages:

High precision

Low noise

Light-weight

Detailed Photos

 

 

Product Parameters

Frame  Model Ratio Nominal Maximum Emergency Nominal Maximum Permitted Permitted axial load Maximum Maximum Weight Moment Moment Moment Moment
size output torque output torque stop torque input speed input speed radial load radial load axial load of inertia(≤Φ8) of inertia(≤Φ14) of inertia(≤Φ19) of inertia(≤Φ28)
  [Nm] [Nm] [Nm] [rpm] [rpm] [N] [N] [N] [N] [KG] [kgcm²] [kgcm²] [kgcm²] [kgcm²]
90 single 3 50 80 200 3000 6000 810 930 2400 2200 3.7 0.72 1.2 3.2
4 75 125 250 3000 6000 890 1100 2400 2200 0.49 0.95 3
5 75 125 250 3000 6000 960 1200 2400 2200 0.4 0.86 2.9
6 75 125 250 3000 6000 1000 1300 2400 2200 0.36 0.82 2.8
7 75 125 250 3000 6000 1100 1300 2400 2200 0.32 0.79 2.8
8 75 125 250 3000 6000 1200 1400 2400 2200 0.31 0.77 2.8
9 50 80 200 3000 6000 1200 1500 2400 2200 0.29 0.76 2.8
10 50 80 200 3000 6000 1400 1600 2400 2200 0.29 0.75 2.8

Applicable Industries

 

 

                              Packaging   Machinery                              Mechanical  Hand                                                         Textile  Machinery

                   Non  Standard  automation                                          Machine  Tool                                                       Printing   Equipment

Certifications

 

 

Company Profile

 

DESBOER (HangZhou) Transmission Technology Co., Ltd. is a subsidiary of DESBOER (China), which is committed to the design, development, customized production and sales of high precision planetary reducer as 1 of the technology company. Our company has over 10 years of design, production and sales experience, the main products are the high precision planetary reducer, gear, rack, etc., with high quality, short delivery period, high cost performance and other advantages to better serve the demand of global customers. It is worth noting that we remove the intermediate link sale from the factory directly to customers, so that you can get the most ideal price and also get our best quality service simultaneously.

 

About Research

In order to strengthen the advantages of products in the international market, the head company in Kyoto, Japan to established KABUSHIKIKAISYA KYOEKI, mainly engaged in the development of DESBOER high precision planetary reducer, high precision of transmission components such as the development work, to provide the most advanced design technology and the most high-quality products for the international market.

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Marine, Agricultural Machinery, CNC Machine
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Plantery Type
Hardness: Hardened Tooth Surface
Installation: All Directions
Step: Single-Step
Customization:
Available

|

Customized Request

planetary gearbox

Considerations for Selecting Planetary Gearboxes for Aerospace and Satellite Applications

Selecting planetary gearboxes for aerospace and satellite applications requires careful consideration due to the unique demands of these industries:

  • Weight and Size: Aerospace and satellite systems demand lightweight and compact components. Planetary gearboxes with high power density and lightweight materials are preferred to minimize the overall weight and size of the equipment.
  • Reliability: Aerospace missions involve critical operations where component failure is not an option. Planetary gearboxes with a proven track record of reliability and durability are essential to ensure mission success.
  • High Efficiency: Efficiency is crucial in aerospace applications to optimize power usage and extend the operational life of satellites. Planetary gearboxes with high efficiency ratings contribute to energy conservation.
  • Extreme Environments: Aerospace and satellite systems are exposed to harsh conditions such as vacuum, extreme temperatures, and radiation. Planetary gearboxes need to be designed and tested to withstand these conditions without compromising performance.
  • Precision and Accuracy: Many aerospace operations require precise positioning and accurate control. Planetary gearboxes with minimal backlash and high precision gear meshing contribute to accurate movements.
  • Lubrication: Lubrication plays a vital role in aerospace gearboxes to ensure smooth operation and prevent wear. Gearboxes with efficient lubrication systems or self-lubricating materials are favored.
  • Redundancy and Fail-Safe: Some aerospace systems incorporate redundancy to ensure mission success even in case of component failure. Planetary gearboxes with built-in redundancy or fail-safe mechanisms enhance system reliability.
  • Integration: Planetary gearboxes need to be seamlessly integrated into the overall design of aerospace and satellite systems. Customization options and compatibility with other components are important factors.

Overall, selecting planetary gearboxes for aerospace and satellite applications involves a comprehensive evaluation of factors related to weight, reliability, efficiency, durability, environmental resistance, precision, and integration to meet the unique demands of these industries.

planetary gearbox

The Role of Lubrication and Cooling in Maintaining Planetary Gearbox Performance

Lubrication and cooling are essential factors in ensuring the optimal performance and longevity of planetary gearboxes. Here’s how they play a crucial role:

Lubrication: Proper lubrication is vital for reducing friction and wear between gear teeth and other moving components within the gearbox. It forms a protective layer that prevents metal-to-metal contact and minimizes heat generation. The lubricant also helps dissipate heat and contaminants, ensuring a smoother and quieter operation.

Using the right type of lubricant and maintaining the proper lubrication level are essential. Over time, lubricants may degrade due to factors like temperature, load, and operating conditions. Regular lubricant analysis and replacement help maintain optimal gearbox performance.

Cooling: Planetary gearboxes can generate significant heat during operation due to friction and power transmission. Excessive heat can lead to lubricant breakdown, reduced efficiency, and premature wear. Cooling mechanisms, such as cooling fans, fins, or external cooling systems, help dissipate heat and maintain a stable operating temperature.

Efficient cooling prevents overheating and ensures consistent lubricant properties, extending the life of the gearbox components. It’s particularly important in applications with high-speed or high-torque requirements.

Overall, proper lubrication and cooling practices are essential to prevent excessive wear, maintain efficient power transmission, and prolong the service life of planetary gearboxes. Regular maintenance and monitoring of lubrication quality and cooling effectiveness are key to ensuring the continued performance of these gearboxes.

planetary gearbox

Contribution of Planetary Gearboxes to Efficient Industrial Automation and Robotics

Planetary gearboxes play a crucial role in enhancing the efficiency of industrial automation and robotics systems by offering several advantages:

1. Compact Design: Planetary gearboxes provide high power density and a compact form factor. This is essential in robotics and automation where space is limited and components need to be tightly integrated.

2. High Torque Density: Planetary gearboxes can achieve high torque output in a compact size, allowing robots and automated systems to handle heavy loads and perform demanding tasks efficiently.

3. Precision and Accuracy: The design of planetary gear systems ensures accurate and precise motion control. This is vital in robotics applications where precise positioning and smooth movement are required for tasks such as pick-and-place operations and assembly.

4. Redundancy: Some planetary gearboxes feature multiple stages and redundant configurations. This provides a level of built-in redundancy, enhancing the reliability of automation systems by allowing continued operation even if one stage fails.

5. Efficiency: Planetary gearboxes are designed for high efficiency, minimizing energy losses and ensuring that the power delivered to the output stage is effectively utilized. This efficiency is crucial for reducing energy consumption and optimizing battery life in robotic applications.

6. Speed Control: Planetary gearboxes allow for precise speed control, enabling robots to perform tasks at varying speeds as needed. This flexibility is essential for tasks that require different motion dynamics or speed profiles.

7. Reduction of Motor Loads: Planetary gearboxes can reduce the load on the motor by providing mechanical advantage through gear reduction. This allows smaller, more efficient motors to be used without sacrificing performance.

8. Shock Absorption: The inherent elasticity of gear teeth in planetary gearboxes can help absorb shocks and impacts, protecting the system components and ensuring smooth operation in dynamic environments.

9. Customization: Planetary gearboxes can be tailored to specific application requirements, including gear ratios, output configurations, and mounting options. This adaptability allows for optimal integration into various automation and robotics setups.

10. Maintenance and Durability: High-quality planetary gearboxes are designed for durability and low maintenance. This is especially important in industrial automation and robotics, where continuous operation and minimal downtime are essential.

Overall, planetary gearboxes contribute significantly to the efficient operation of industrial automation and robotics systems by providing the necessary torque, precision, compactness, and reliability required for these dynamic and demanding applications.

China OEM Desboer Nhk090 Series Ratio 3-10 Economical, High-Efficiency, Low-Backlash Planetary Gearboxes for Servo Motor   gearbox and motor	China OEM Desboer Nhk090 Series Ratio 3-10 Economical, High-Efficiency, Low-Backlash Planetary Gearboxes for Servo Motor   gearbox and motor
editor by CX 2024-03-29

China OEM Hydraulic Excavator Swing/Rotory/Gear Motor Excavator Parts Planetary Gearbox differential gearbox

Product Description

 

Product Description

Hydraulic Excavator SWING/ROTORY/GEAR MOTOR EXCAVATOR PARTS Planetary Gearbox

1. Completely, assembly, and ready to installed in your excavators.

2. With MOTOR,

3. All components are produced by us.

4. All new, undamaged.

5. Painted or Unpainted, depend on requirement

6. 90 days warranty, call or email with any questions.

7. Plywood Case Packing, free of fumigation

8. Deliver to CZPT by Sea, Air, or Carrier.

Engine Parts : Piston,liner, gasket set, bearing, valve, crankshaft,connect rod, camshaft,cyl block,cyl head, turbo,starter, water pump, alternator, feed pump, injector, fuel pump…….

Hydraulic Parts: Hyd pump,gear pump,regulator swing motor,travel motor,main control valve, panetary carrier assy,sun gear, panetary gear, cyl block&valve plater, piston shoe,……..

Undercarriage Parts: carrier roller,bottom/track roller, idler,sproker, track shoe, track link, adjust cyl,arm/boom/bucket cyl, adjust spring, exvavator bucket, bucket teeth/tip……

Electronic Parts : Throttle/stepper motor,electric appliance,Pressure Switch, Sensor, Switch Start Flameout Solenoid , monitor, controller/ECU……  

Cabin Parts : Complete Cabin, Cabin door, door panel, engine cover, Raditator, hyd oil cooler, Condenser, air condenser…….

Detailed Photos

 

Engine Parts Including:

Crankshaft Cylinder Head Cylinder Liner Cylinder Block
Camshaft Injector Filter Fuel Pump
Water Pump Piston Turbocharger Connecting Rod
Gear Ring Engine Assembly Flywheel Injection Valves
Bearing Bushes Full Gasket Set Intake Valve Exhaust Valve

 

Product Parameters

Applicable Models:

THE MODELS FOR EXCAVATOR/BULLDOZER 
FOR-HITACHI 
EX40-1 EX40-2 EX55 EX60 EX60-2 EX60-3 EX60-5 EX70 EX75
EX100 EX110 EX120 EX120-1 EX120-2 EX120-3 EX120-5 EX130-1 EX200-1
EX200-2 EX200-3 EX200-5 EX220-3 EX220-5 EX270 EX300 EX300-1 EX300-2
EX300-3 EX300-5 EX300A EX330 EX370 EX400-1 EX400-2 EX400-3 EX400-5
EX450 ZAX30 ZAX55 ZAX200 ZAX200-2 ZAX330 ZAX450-1 ZAX450-3 ZAX450-5
ZX110 ZX120 ZX200 ZX200-1 ZX200-3 ZX200-5G ZX200LC-3 ZX210 ZX210-3
ZX210-5 ZX225 ZX240 ZX250 ZX270 ZX300 ZX330 ZX330C ZX350
ZX450 ZX450LC ZX500 ZX500LC ZX520 ZX670 ZX690 ZX870 ZX130
ZX170 ZX170LC ZX195 ZX260 ZX360 ZX360LC ZX400 ZX470 ZX490
FOR-KOMATSU(EXCAVATOR)
PC20-7 PC30 PC30-3 PC30-5 PC30-6 PC40-7 PC45 PC45-2 PC55
PC120-6 PC130 PC130-7 PC200 PC200-1 PC200-3 PC200-5 PC200-6 PC200-7
PC200-8 PC210-6 PC220-1 PC220-3 PC220-6 PC220-7 PC220-8 PC270-7 PC202B
PC220LC-6 PC220LC-8 PC240 PC300 PC300-3 PC300-5 PC300-6 PC300-7 PC300-7K
PC300LC-7 PC350-6/7 PC400 PC400-3 PC400-5 PC400-6 PC400LC-7 PC450-6 PC450-7
PC600 PC650 PC750 PC800 PC1100 PC1250 PC2000    
FOR-KOMATSU(BULLDOZER)
D20  D31 D50 D60 D61 D61PX D65A D65P D64P-12
D80 D85 D155 D275 D355 D85PX D85EX D65EX  
FOR-CATERPILLAR(EXCAVATOR)
E200B E200-5 E320D E215 E320DL E324D E324DL E329DL E300L
E320S E320 E320DL E240 E120-1 E311 E312B E320BL E345
E324 E140 E300B E330C E120 E70 E322C E322B E325
E325L E330 E450 CAT225 CAT312B CAT315 CAT320 CAT320C CAT320BL
CAT330 CAT322 CAT245 CAT325 CAT320L CAT973  CAT939C CAT963C CAT313
CAT323 CAT318 CAT326 CAT328 CAT329 CAT336 CAT340 CAT345 CAT349
FOR*CAT-ERPILLAR(BULLDOZER)
D3 D3B D3C D3D D4 D4C D4D D4E D4H
D5 D5B D5C D5D D5H D5M D6 D6C D6D
D6H D6M D6R D6G D6N D7 D7C D7D D7E
D7F D7G D7H D7R D8 D8R D8N D8H D8T
D8L D8K D8G D8M D9 D9L D9N D9R D9T
D10 D10R D10N D10T D11 D11R D11N    
FOR-KOBELCO
SK120-6 SK120-5 SK210-8 SK210LC-8 SK220 SK220-1 SK220-3 SK220-5/6 SK200 
SK200 SK200  SK200-3 SK200-6 SK200-8 SK200-5/6 SK60 SK290 SK100
SK230 SK250 SK250-8 SK260LC-8 SK300 SK300-2 SK300-4 SK310 SK320
SK330-8 SK330 SK350LC-8 SK235SR SK450 SK480 SK30-6    
FOR-SUMITOMO
SH120  SH120-3 SH200 SH210-5 SH200 SH220-3 SH220-5/7 SH290-3 SH350-5/7
SH220 SH280 SH290-7 SH260 SH300 SH300-3 SH300-5 SH350 SH60
FOR-VOLVO
EC160C EC160D EC180B EC180C EC180D EC210 EC210 EC210B EC240B
EC290 EC290B EC240 EC55 EC360 EC360B EC380D EC460 EC460B
EC460C EC700 EC140 EC140B EC160B EC350 EC350DL EC480 EC340
FOR-LIEBHERR
R914 R924 R934 R944 R916 R926 R936 R954 R966
R974 R984              
FOR-KUBOTA
JH60-7 JH115 JH135 JH161 JH185        
FOR-DAEWOO
DH200 DH220-3 DH220 DH220S DH280-2 DH280-3 DH55 DH258 DH130
DH370 DH80 DH500 DH450 DH225 DH150 DH330 DH400 DH580
FOR-HYUNDAI
R60-5 R60-7 R80-7 R200 R200-3 R210 R210-1 R210-9 R210LC
R210LC-7 R225 R225-3 R225-7 R250 R250-7 R290 R290LC R290LC-7
R320 R360 R954 R205 R210-5 R215 R230 R235 R275
R300 R385 R485            
FOR-KATO
HD512 HD1430 HD512III HD820III HD820R HD1430III HD700VI HD1250VII HD250SE
HD400SE HD500SE HD1880            
FOR-DOOSAN
DX225 DX225LC DX258 DX300 DX300LCA DX420 DX430 DX140 DX150
DX220 DX250 DX255 DX260 DX370 DX480 DX520    
FOR-SHXIHU (WEST LAKE) DIS.I
SD13-2 DH16J2XL DH16J2LGP SD16 SD22 SD32      
FOR-CASE
CX210 CX210B CX210C CX210D CX210LC CX225 CX235 CX235C CX240
CX240C CX245 CX250 CX250C CX300 CX300C CX330 CX330C CX350
CX350C CX460 CX460LC CX470 CX470C CX490 CX490D CX700 CX700B
CX750 CX750D              
FOR-JCB
JS200 JS200SC JS210 JS210SC JS220 JS220LC JS230 JS230LC JS240
JS240LC JS290 JS290LC JS300 JS300LC JS330 JS330LC    
FOR-XCMG
XE55DA XE60DA XE65DA XE75DA XE80C XE80D XE85C XE85D XE135D
XE155DK XE150D XE155D XE200DA XE200D XE200C XE205DA XE215DA XE215C
XE215D XE215HB XE225DK XE230C XE245DK XE240D XE260C XE265C XE270DK
XE305D XE335DK XE335C XE370D XE370DK XE370CA XE370C XE380DK XE470D
XE490DK XE490CK XE500HB XE520DK XE550DK XE750D XE750G XE950D XE950G
XE950DA XE55 XE60 XE65 XE75 XE80 XE85 XE135 XE150
XE155 XE200 XE205 XE215 XE225 XD230 XE240 XE245 XE260
XE265 XE270 XE305 XE335 XE370 XE380 XE470 XE490 XE500
XE520 XE550 XE750 XE950          
FOR-MITSUBISHI
MS30 MS110 MS110-3 MS110-5 MS110-8 MS180      
FOR-SAMSUNG
SE210 SE280 SE320            
FOR-IHI
IHI35 IHI50 IHI55 IHI60 IHI75        
FOR-YMMA
YM15 YM30 YM35 YM55 YM65 YM85      
FOR-LIUGONG
LG906C LG907 LG200 LG220 LG925 LG934      

Related Products:

 

Company Profile

Exported Experience:
Since 2005, we have been engaged in the export business of engineering machinery engines and Parts/accessories, Undercarriage Parts, Mini/Small excavators, backhoe loader, Skid Steer Loard and Attachments. Mainly exported to countries and regions such as Europe, the United States, Canada, Mexico, Brazil, and Southeast Asia with ISO, CE certificates.
Various Parts in Stock
1. Engine, hydraulic pump, distribution valve, center rotation, slewing bearing, walking drive, cab, control valve, relief valve, main control multi way valve, etc
2. Hydraulic Parts: main oil seal | repair kit | O-ring | water pump repair kit | hammer repair kit | distribution valve repair kit | hydraulic pump repair kit | rotary pump repair kit | oil cylinder repair kit | walking motor repair kit | hydraulic cylinder | piston | middle arm cylinder | bucket cylinder | cylinder barrel | tension cylinder | piston rod | large screw nut | boom cylinder
3. Electrical Parts, Including: starter motor computer board | automatic refueling motor | lever assembly | display screen | throttle cable | solenoid valve | Xiao | CZPT button | relay | instrument panel | fuse | monitor | control panel | air conditioning compressor | vehicle wiring harness | oil suction pump | governor | connector | timer | plug | pre thermal resistor | fuse | fuse | diesel meter | CZPT assembly | controller | on Off | Magnetic switch | Hydraulic pump pressure switch | Oil pressure switch | Stop switch | Ignition switch | Sensor | Water temperature sensor | Oil sensor | Diesel sensor | Automatic throttle motor sensor | Sensor | Single foot sensor | Angle sensor | Speed sensor | Pressure sensor
4. Undercarriage Parts: including; Idler | Carrier roller | Support roller | Drive teeth | Chain | Chain connection | Chain pin | Bucket shaft | Four wheel belt | Chain rail assembly | Idler bracket | Rotary support | Track | Rubber track | Track assembly | Track plate | Tensioning device | Tensioning cylinder seat | Tensioning cylinder | Universal cross shaft | Chain plate screw | Big spring | Chain plate | Chain link | Chain guard frame | Bottom guard plate
5. Bucket, rock bucket, reinforced bucket, ditch bucket, grid bucket, screen bucket, cleaning bucket, tilting bucket, thumb bucket, trapezoidal bucket
6. Excavator quick change joint, excavator oil cylinder, crushing hammer, hydraulic shear, hydraulic compactor, vibrating hammer, bucket teeth, tooth seat, track, carrier roller, support roller
And Other related machineries parts:
Excavator, wheeled excavator, loader, small loader, forklift, sliding loader, excavator loader , bulldozer, scraper, dump truck, mining truck, roller, single steel wheel roller, double steel wheel roller, tire roller, small roller, compactor, smooth wheel roller, 3 wheel roller, sheep foot pressure Road machine, impact compactor, flat compactor, vibration compactor, dynamic compactor, hand-held compactor etc.

Customer’s on-site use

Our Advantages

1. The company has a stable and friendly supply and demand relationship with more than 20 factories for a long time, with reliable quality, stable supply of goods, and timely and professional after-sales service.
2. The company has professional customer service personnel, sales team, and after-sales service team, which can provide online video after-sales service. If conditions permit, on-site service is also available.

 

 

FAQ

Q1: Are you trading company or manufacturer ?

A: We are an industry and trade integrated enterprise.

Q2. How is your after-sales service?

1. We implement factory joint warranty services: our after-sales service personnel assist customers and cooperate with our factory’s technical personnel to implement 2 service modes: online and offline;
2. Each product has a certain warranty period, and within the warranty period, free accessories are provided; Unexpected warranty period, only the cost of accessories will be charged. All shipping costs are borne by customers;
3. If conditions permit, we can appoint technicians to provide on-site services.

Q3. What are your terms of delivery?

A: EXW, FOB, CFR, CIF.

Q4: What quality level does your product belong to?

A: We have been engaged in the export business of these products since 2005 and have established a sound quality control system. According to the procurement needs of different markets and customers, we mainly focus on products with high, medium quality, with original parts as the main component and CZPT parts as the auxiliary.

Q5. How about your delivery time?

Generally, within 5-10days after your payment.
If we do not ship the goods after receiving payment, you can directly file a complaint with the Chinese embassy or consulate in the local area, and the cost will be borne by our company.

Q6: How do you make our business long-term and good relationship?

A:1. We keep good quality and competitive price to ensure our customers benefit ;

2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
Thank you very much for your attention. Kindly Please feel free to contact us at any time.  Welcome to back to your HOME

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Technical Support
Warranty: 12 Months
Type: Crawler Excavator
Usage: Special Excavator, Marine Excavator, Mining Excavator, GM Excavator
Bucket: Backhoe
Transmission: Hydraulic Transmission
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Role of Planetary Gearboxes in Powertrain Systems of Electric and Hybrid Vehicles

Planetary gearboxes play a critical role in the powertrain systems of both electric and hybrid vehicles, contributing to their efficiency and performance:

Electric Motor Integration: In electric vehicles (EVs) and hybrid vehicles, planetary gearboxes are commonly used to connect the electric motor to the drivetrain. They enable torque and speed transformation, ensuring the motor’s output is suitable for the vehicle’s desired speed range and load conditions.

Torque Splitting in Hybrids: Hybrid vehicles often have both an internal combustion engine (ICE) and an electric motor. Planetary gearboxes enable torque splitting between the two power sources, optimizing their combined performance for various driving scenarios, such as electric-only mode, hybrid mode, and regenerative braking.

Regenerative Braking: Planetary gearboxes facilitate regenerative braking in electric and hybrid vehicles. They enable the electric motor to function as a generator, converting kinetic energy into electrical energy during deceleration. This energy can then be stored in the vehicle’s battery for later use.

Compact Design: Planetary gearboxes offer a compact design with a high power density, making them suitable for the limited space available in electric and hybrid vehicles. This compactness allows manufacturers to maximize interior space and accommodate battery packs, drivetrain components, and other systems.

Efficient Power Distribution: The unique arrangement of planetary gears allows for efficient power distribution and torque management. This is particularly important in electric and hybrid powertrains, where optimal power allocation between different components contributes to overall efficiency.

CVT Functionality: Some hybrid vehicles incorporate Continuously Variable Transmission (CVT) functionality using planetary gearsets. This enables seamless and efficient transitions between various gear ratios, improving the driving experience and enhancing fuel efficiency.

Performance Modes: Planetary gearboxes facilitate the implementation of different performance modes in electric and hybrid vehicles. These modes, such as “Sport” or “Eco,” adjust the power distribution and gear ratios to optimize performance or energy efficiency based on the driver’s preferences.

Reduction Gear for Electric Motors: Electric motors often operate at high speeds and require reduction gearing to match the vehicle’s requirements. Planetary gearboxes provide the necessary gear reduction while maintaining efficiency and torque output.

Efficient Torque Transfer: Planetary gearboxes ensure efficient transfer of torque from the power source to the wheels, resulting in smooth acceleration and responsive performance in electric and hybrid vehicles.

Integration with Energy Storage: Planetary gearboxes contribute to the integration of energy storage systems, such as lithium-ion batteries, by efficiently connecting the power source to the drivetrain while managing power delivery and regeneration.

In summary, planetary gearboxes are integral components of the powertrain systems in electric and hybrid vehicles. They enable efficient power distribution, torque transformation, regenerative braking, and various driving modes, contributing to the overall performance, efficiency, and sustainability of these vehicles.

planetary gearbox

Impact of Temperature Variations and Environmental Conditions on Planetary Gearbox Performance

The performance of planetary gearboxes can be significantly influenced by temperature variations and environmental conditions. Here’s how these factors impact their operation:

Temperature Variations: Extreme temperature fluctuations can affect the lubrication properties of the gearbox. Cold temperatures can cause the lubricant to thicken, leading to increased friction and reduced efficiency. On the other hand, high temperatures can cause the lubricant to thin out, potentially leading to insufficient lubrication and accelerated wear.

Environmental Contaminants: Planetary gearboxes used in outdoor or industrial environments can be exposed to contaminants such as dust, dirt, moisture, and chemicals. These contaminants can infiltrate the gearbox and degrade the quality of the lubricant. Additionally, abrasive particles can cause wear on gear surfaces, leading to decreased performance and potential damage.

Corrosion: Exposure to moisture, especially in humid or corrosive environments, can lead to corrosion of gearbox components. Corrosion weakens the structural integrity of gears and other components, which can ultimately result in premature failure.

Thermal Expansion: Temperature changes can cause materials to expand and contract. In gearboxes, this can lead to misalignment of gears and improper meshing, causing noise, vibration, and reduced efficiency. Proper consideration of thermal expansion is crucial in gearbox design.

Sealing and Ventilation: To mitigate the impact of temperature and environmental factors, planetary gearboxes need effective sealing to prevent contaminants from entering and to retain the lubricant. Proper ventilation is also essential to prevent pressure build-up inside the gearbox due to temperature changes.

Cooling Systems: In applications where temperature control is critical, cooling systems such as fans or heat exchangers can be incorporated to maintain optimal operating temperatures. This helps prevent overheating and ensures consistent gearbox performance.

Overall, temperature variations and environmental conditions can have a profound impact on the performance and lifespan of planetary gearboxes. Manufacturers and operators need to consider these factors during design, installation, and maintenance to ensure reliable and efficient operation.

planetary gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

China OEM Hydraulic Excavator Swing/Rotory/Gear Motor Excavator Parts Planetary Gearbox   differential gearbox	China OEM Hydraulic Excavator Swing/Rotory/Gear Motor Excavator Parts Planetary Gearbox   differential gearbox
editor by CX 2024-03-26

China Custom Desboer Ndv200 Series Low Backlash High Torque Helical Gear Planetary Gearbox Speed Reducer for Servo Motor manufacturer

Product Description

Product Description

The NDV200 series planetary gearboxes are designed and machined as a single unit with special tapered roller bearings to provide high radial load, high torque, ultra-precision, and small size. The NDV200 series uses in highly rigid industries such as fiber optic laser equipment, floor track equipment, robot seventh axis, Parallel robots (spider hand) machine tools, and rotating arms.
Product Name: High Precision Planetary Reducer
Product Series: NDV200 Series
Product features: high torque, high load, ultra-precision, small size
Product Description:
Integrated design concept with high-strength bearings ensure the product itself is durable and efficient
A variety of output ideas such as shaft output, flange and gear are available.
1 arc minute ≤ backlash ≤ 3 arc minutes
Reduction ratios ranging from 3 to 100
Frame design: increases torque and optimizes power transmission
Optimised selection of oil seals: reduces friction and laminate transmission efficiency
Protection class IP65
Warranty: 2 years

Detailed Photos

Our Advantages

High torque
High load
ultra-precision
Small size

Product Parameters

 

Segment number Single segment
Ratio i 4 5 7 10
Rated output torque Nm 1040 1140 1040 850
Emergency stop torque Nm Three times of Maximum Output Torque
Rated input speed Rpm 3000
Max input speed Rpm 6000
Ultraprecise backlash arcmin ≤1
Precision backlash arcmin ≤3
Standard backlash arcmin ≤5
Torsional rigidity Nm/arcmin 440
Max.bending moment Nm 3530
Max.axial force N 17000
Service life hr 30000(15000 under continuous operation)
Efficiency % ≥97%
Weight kg 31.6
Operating Temperature ºC -10ºC~+90ºC
Lubrication   Synthetic grease
Protection class   IP64
Mounting Position   All directions
Noise level(N1=3000rpm,non-loaded) dB(A) ≤67
Rotary inertia Kg·cm² 25.03 23.29 22.48 22.51

Applicable Industry

 

Certifications

 

Company Profile

 

DESBOER (HangZhou) Transmission Technology Co., Ltd. is a subsidiary of DESBOER (China), which is committed to the design, development, customized production and sales of high precision planetary reducer as 1 of the technology company. Our company has over 10 years of design, production and sales experience, the main products are the high precision planetary reducer, gear, rack, etc., with high quality, short delivery period, high cost performance and other advantages to better serve the demand of global customers. It is worth noting that we remove the intermediate link sale from the factory directly to customers, so that you can get the most ideal price and also get our best quality service simultaneously.

 

About Research

 

In order to strengthen the advantages of products in the international market, the head company in Kyoto, Japan to established KABUSHIKIKAISYA KYOEKI, mainly engaged in the development of DESBOER high precision planetary reducer, high precision of transmission components such as the development work, to provide the most advanced design technology and the most high-quality products for the international market.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 2 Years
Warranty: 2 Years
Logo Printing: with Logo Printing
Size: Ndv140
Customized: Customized
Type: Gearbox
Customization:
Available

|

Customized Request

planetary gearbox

Impact of Gear Tooth Design and Profile on the Efficiency of Planetary Gearboxes

The design and profile of gear teeth have a significant impact on the efficiency of planetary gearboxes:

  • Tooth Profile: The tooth profile, such as involute, cycloid, or modified profiles, affects the contact pattern and load distribution between gear teeth. An optimized profile minimizes stress concentration and ensures smooth meshing, contributing to higher efficiency.
  • Tooth Shape: The shape of gear teeth influences the amount of sliding and rolling motion during meshing. Gear teeth designed for more rolling and less sliding motion reduce friction and wear, enhancing overall efficiency.
  • Pressure Angle: The pressure angle at which gear teeth engage affects the force distribution and efficiency. Larger pressure angles can lead to higher efficiency due to improved load sharing, but they may require more space.
  • Tooth Thickness and Width: Optimized tooth thickness and width contribute to distributing the load more evenly across the gear face. Proper sizing reduces stress and increases efficiency.
  • Backlash: Backlash, the gap between meshing gear teeth, impacts efficiency by causing vibrations and energy losses. Properly controlled backlash minimizes these effects and improves efficiency.
  • Tooth Surface Finish: Smoother tooth surfaces reduce friction and wear. Proper surface finish, achieved through grinding or honing, enhances efficiency by reducing energy losses due to friction.
  • Material Selection: The choice of gear material influences wear, heat generation, and overall efficiency. Materials with good wear resistance and low friction coefficients contribute to higher efficiency.
  • Profile Modification: Profile modifications, such as tip and root relief, optimize tooth contact and reduce interference. These modifications minimize friction and increase efficiency.

In summary, the design and profile of gear teeth play a crucial role in determining the efficiency of planetary gearboxes. Optimal tooth profiles, shapes, pressure angles, thicknesses, widths, surface finishes, and material selections all contribute to reducing friction, wear, and energy losses, resulting in improved overall efficiency.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Energy Efficiency of a Worm Gearbox: What to Expect

The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:

  • Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
  • Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
  • Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
  • Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
  • Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.

When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.

China Custom Desboer Ndv200 Series Low Backlash High Torque Helical Gear Planetary Gearbox Speed Reducer for Servo Motor   manufacturer China Custom Desboer Ndv200 Series Low Backlash High Torque Helical Gear Planetary Gearbox Speed Reducer for Servo Motor   manufacturer
editor by CX 2024-03-14